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Abstract 

We studied horizontal eye movements induced by en-bloc yaw rotation, over a frequency 

range 0.2 - 2.8 Hz, in 10 normal h u m  subjects as they monocularly viewed a target located at 

their near pomt of focus. We measured gain and phase relationships between eysin-head 

velocity and head velocity when the near target was either earth-fiued or head-fixd. During 

viewingoftheearth-fDced near tqet,median gam was 1.49 (range 1.24 - 1.87) at 0.2 Hz for the 

group of subjects, but declined at hi&er frequencies, so that at 2.8 Hz median gim was 1.08 

(range 0.68 - 1.67). During viewing of the head-fixd near target, median gam was 0.03 (range 

0.01 - 0.10) at 0.2 Hz for the group of subjects, but increased at hi&er frequencies, so that at 

2.8 Hz median gain was 0.71 (range 0.28 - 0.94). We estimated the vestibular contribution to 

these responses (vestibulo-ocular reflex gm, Gvor) by applying transient head perturbations 

(peak acceleration> 1,000 deg's2) during sinusoidal rotation under the two viewing conditions. 

Median Gvor, estimated < 7 0 m  after the onset of head perturbation, was 0.98 (range 0.39 - 

1.42) while viewingtheearth-fDed near target, and 0.97 (range 0.37 - 1.33) while viewing the 

head-fixd near tatget. For the group of subjects, 9 out of 10 subjects showed no sigificant 

difference of Gvor between the two viavingconditions ( p > 0.053 ) at all test frequencies. 

Since Gvor accounted for only -73% of the overall response gain during viaving of the earth- 

fixd target, we investigited the relative contributions of non-vestibular factors. When subjects 

viewed the earth-fDced target under strobe illumination, to eliminate retinal image slip 

information, the gain of compensatory eye movements declined compared with viewing in 

ambient room li&t. During sumof-sine head rotations, while viewing the earth-ftued tatget, to 
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minimize contributions from predictive mechanisms, gim also declined Nonetheless, simple 

superposition of smooth-pursuit tracking of sinusoidal target motion could not fully account 

for the overall response at higJer frequencies, suggesting other non-vestibular contributions. 

During binocular viewing conditions when vergence angle was sigpificantly greater than 

monocular viewing (p < O.oOl), ths gim of compensatory eye movemeEts did not show 

proportional change; indeed, gam could not be con-elated with vergence ande during monocular 

or binocular viewing. We conclude that several separate factors contribute to generate eye 

rotations during sinusoidal yaw head rotations while viewing a near target; these include the 

VOR, visual-tracking eye movements that utilize retinal image motion, predictive eye 

movements and, possibly, other unidentified norrvestibular factors. For these experiments, 

vergence was not an import& determinant of response gam. 

I N T R O D U C T I O N  

In order to see the enviromnt clearly, images of stationary objects must be held fairly 

still on the retina (Carpenter 1991). During natural activities, especially lommotbn, head 

perturbations with predominant frequencies ranging up to 5Hz pose a threat to clear vision 

(Grossman et al. 1988; Das et al. 1995b; Crane and Demer 1997a). The vestibuloacular reflex 

(VOR) generates eye rotations at short latency (< 15 ms) that can compensate for such head 

perturbations (Maas et al. 1989; Collewijn and Smeets 2000) and maintain a clear and stable 

visual percept. Individuals who have lost vestibular function report that they cannot see their 

environment clearly while they are in motion (J.C. 1952). Thus, the VOR is indispensable for 
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clear vision during natural activities (Leigh and Zee 1999). Nonetheless, other factors contribute 

to generate eye rotations that compensate for head perturbations. One factor is visually 

mediated eye movements, such as smooth pursuit, that can compensate for head movements, 

but act at longer latencies (-100 msec) than the VOR (Carl and Gellman 1987). Another factor 

is the predictive mechanism that acts to negite the delay inherent in visual sigal processing 

(Dallos and Jones 1963; Bames 1993; Barnes et a1 2000). The contribution of non-vestibular 

factors can be demonstrated, for example, when subjects attempt to fimte the remembered 

locationofa target indarkness during head rotations, thecompensatory response is less than if 

they actually view the visual target (Barr et al. 1976; Das et al. 2000). In this paper, we refer to 

the sum of vestibular and non-vestibular factors contributing to eye movements th& 

compensate for head rotations as the enhanced VOR (EVOR). How much nomvestibular 

factors contribute to EVOR appears to vary according to species and test paradigms. 

Special demands are made when subjects v i m  a new, earth-fmed stationary target 

during head rotations (BlakemoE and Donaghy 1980; Biger and Prablanc 1981 ; Viirre et al. 

1986; Hine and Thorn 1987; Han et al. 2001). Since the eyes do not lie on the axk of head 

rotation, t h y  are displaced (translated) as well as rotated whm the head tums. Thus, during 

the near-viewing situation, in order to hold the .gaze on the target, the eye must rotate moE 

than the head; with the target at the subject’s near pomt of accommodation, the gam of EVOR 

(eye velocity / head velocity) can exceed 1.5. Prior studies in monkey (Viire et ai. 1986; Snyder 

andKing 1992) have suggested that such gam increases, which occur within 20 ms of the onset 

of eyemovements, are due to an inaement of the internal gam of the VOR (Gvor). In humans, 
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the gain of EVOR during viewing of a near target may occur even earlier (8-18 ms) after the 

onset ofhead rotation(Cmne and Demer 1998). The questions addressed in the present study 

we=: (1) How much does Gvor change during viewing of a near target? (2) what nomvestibular 

factors contribute to EVOR? ( 3 )  What is the behavior if subjects view a near target that is head- 

fixd (rather than earth-fmed)? Under this last condition, the VOR may be canceled by visual- 

tracking mechanisms, such as smooth pursuit (Cullen et al. 1991; Huebner et al. 1992). 

Preliminary results have been published as shat reports (Han et al. 2003,2005). 

M E T H O D S  

Subjects 

We studied 10 normal subjects (4 female, age 24 - 57 year). Five subjects were naive as 

to the purpose of the study, two were experienced in ocular motor studies, and t h e  wex 

aware of the purpose of the experiments. No subjects had any ocular motor abnormalities or 

were taking drugs with effects on thenervous system. Five subjects were myopes (corrections 

were - 3.5 D on average), but were able to clearly see the near visual stimuli without their 

spectacle conections throughout the testing. All subjects gave written, informed consent in 

accordance with our Institutional Review Board and the tenets of the Declaration of Helsinki 

Experimental strinuli 

Head and eye rotations were measured using the maeetic search coil technique, with 6- 

ft (1.8 m) field coils (CNC En$eekg, Seattle, WA) that used a rotating magoetic field in the 
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horizontal plane and an alternating m w e t  ic field in the vertical p lme. Each subject wore a pair 

of scleral search coils (Skalar Delft, Netherlands) on both eyes to measure gaze angle, and a 

third coil f d y  attached on the foxhead to metsure anglar head rotations. Search coils were 

calibrated on a protractor device before experiments. The system was 98.5% linear over an 

opa-atig range of 20E in both horizontal and vertical planes, and the SD of system noise 

was < 0.02E. 

Anglar head rotations in yaw were applied using a vestibular chair (Ternplin 

Engjneering, Laytonville, Calif). Subjects sat in a 30-ft-lb vestibular (motor driven) chair in the 

search coil field, with their heads aligned so that the axis of chair rotations corresponded to the 

axis of their natural head rotations (close to the mid-interaural pomt). They wore a modified 

cycle helmet that contained foam pads to ensure a snug fit for each subject. During the 

experiment, subjects braced their heads against the headrest of the chair thmugh out the 

recording session. 

Five types ofvisual stimuli were used in these experiments: (1) 4 far target consistmg 

of a red laser spot subtending an ange of 0.05E projected onto a wall at a viewing distance of 3 

m; it was either viewed in ambient li&t, or flashed at approxktely 1 Hz in an otherwise dark 

room. (2) An earth-fmd near target, consistmg of a black cross (lm-lcm) drawn on a small 

piece ofwhite tape was attached to apiece ofwood, positioned at theeyelevel of each subject. 

With oneofthe subject’s eye patched throughout the experiment, the cross target was aligned 

on theviewingeyeat a distanceof -12 cm, corresponding to the near pomt of accommodation 

for each subject. (3) A head-fixd near tsuget, consisting of a similar black cross attached to a 
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rigid plastic rod attached to the modified cycle helmet; the target was aligned on the viewing 

eye, at a similar distance to the earth-fKed near target. The main experiments were conducted in 

ambient room light. (4) In control experiments, we used strobe illumination, while four subjects 

viewed the earth-fKed near target. A flash rate of 4 Hz, with 30 Fs flash duration, was used, 

which has been used previously to eliminate retial image slip during vestibular experiments 

(Melvill Jones and Mandl 1981). As a control experiment, we repeated these experiments with 

a flash frequency of 3 times the rotational head frequency and the s a m  flash duration; in this 

way the s a m  amount oftarget positioninformation was available during each rotational cy de. 

(5) A near, horizontal smooth-pursuit target, comisting ofa red laser spot (subtending an ande 

of 0 . E )  was projected onto the black surface ofa horizontally positioned board, which lay just 

below the subject’s eye level. The zero-positionoftarget was adjusted so that it was aligned on 

the viaving eye at the same distance ( - 12 cm) as the earth-fKed and head-fixd near targets. 

The position of the moving target was under computer control, using a X-Y mirror 

galvanomter (model CCX-660, General Scanning Watertown, Mass). Pursuit experiments 

were performed inanotkrwise darkened room and subjects’ heads were held still through out 

the testing. 

Vestibular stimuli consisted of three types of en bloc yaw rotations: (1) Sinusoidal 

head rotations: at each of five test frequencies - 0.2, 0.7, 1.0, 2.0, and 2.8 Hz with a constant 

peak velocity of 15 deg‘sec. At the be&ning of each session, each subject was rotated at a 

frequency of 0.1 Hz with the peak velocity of 15 deglsec while they monocularly viewed the 

constantly illuminated stationary laser far target. This procedure served as a calibration check 
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and assumed that our subjects continuously foveated on the target and generated compensatory 

eye movements with a gah of 1.0. A second calibration check was made as each subject was 

rotated at 0.1 Hz with peak velocity of 15 deg'sec during continuously viewing of the head- 

fixd near target; assumingcontinuous foveation of this target, no ey sin-head rotations should 

begenerated. (2) Transient head perturbations: inorder to measure dynamic internal VOR level 

(gain - Gvor) and to quantify thevestibular contributions to the overall ocular responses under 

different viewing conditions, we applied trmsient head perturbations during sinusoidal 

rotations whm subjects were viewing an earth-fDced or head-fixd near taget at the five test 

frequencies. Since the velocity of vestibular chair was controlled by a voltage sigal (motor 

servo), we used a computer program that generated the acceleration pulses by changing the si@ 

(representing the direction of chair rotation, lef? or ri&) of the control sipal at the peak 

velocity. Consequmtly, at each perturbation the chair velocity changed from 15 de& to - 

lSdeg/s abnxptly, or vice versa, generating a peak acceleration> 1,000 deg'sh; there were a total 

of nine perturbations in each 40s trial. (3) Sumof-sines stimuli (Pseudomndomrotations): in 

order to investigtte the contribution to the responses of predictable visual tracking eye 

movements, we applied sum-of-sines stimuli (pseudomndom chair rotations) in 4 subjects 

during viewing of the eath-fDed near target. The component sine waves had frequencies of 

0.38Hz, 1.23Hz, 2.08Hz and 2.63Hz, with peak velocities of 3.3, 5.5, 6.0, and 153 deg'sec, 

respectively. Thus, the velocity ratio between the hi&est and lowest frequency components 

was> 4.0, which Barnes (1993) has established as a reliable stmtegy for preventing predictive 

visual trxking 
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E x p r  imentalparadigm 

There were five mam experiments (conducted in five sessions, in which 10 subjects 

participated) and four control experiments (conducted in three sessions, in which four subjects 

participated). Each t r d  lasted 40 sec. Subjects were instructed to maintain fimtion of the near 

stimuli using one eye (chosen by themselves); the other eye was occluded but its position was 

monitored by an eye coil during Mam'Experimmts 1 and 2. For the other experiments, only 

the viewing eye was wearing an eye coil, except for the vergence control experiment that 

required binocular viewing 

Main Experiments: 

(1) Head rotations in darkness (VOR): Subjects were asked to attempt to fixate the 

remmbexed location of the flashing far target while they were rotated sinusoidally in the 

vestibuhr chair in dadmess at the five test frequencies. 

(2) Head rotations viewingtheearth-fmd - near tmet (EVOR): Subjects were rotated at each of 

the five test frequencies under ambient room li&t illumination. 

(3) Head rotations viewing the head-fixd near t q e t  (eye-head tracking EHT): Subjects were 

rotated at each ofthe five test test frequencies under ambient room li&t illumination. 

(4) Head Derturbations during EVOR and EHT: Paradigms 2 and 3 were repeated, during 

which transient head accelerations were delivered. 

( 5 )  Smooth oursuit: Subjects were asked to track the near smooth-pursuit target at each of the 

five test frequencies in an otherwise darkened room. 
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Control Emeriments: 

(6) EVOR under strobe illumination: Paradigm 2 was repeated but under stmboscopic 

ilhmination when the flash rate was fixd at 4 Hz for the frequency range of head rotations. In 

two subjects, paradigm2 was repeated with a flash rate adjusted to 3 t k s  the rotational head 

frequency. 

(7) EVOR during; sum-of-sines rotation: Paradigm 2 was repeated usmg the sumof sines 

stimulus. 

(8) EVOR and EHT during binocular viewing: Paradigm 2 and 3 were repeated as five subjects 

viewed the near targets binocularly (aligned on the eye that had viewed monocularly). We 

positioned thenear targets at the s m  distance during binocular or monocular viewing, so that 

we were able to compare how overall response gain changed when vergence angle differed 

D a b  coRect2bn andanalysis 

Horizontal and vertical h e d  and gaze (eye-in-space) sigals were lowpass filtered usmg 

Krohn-Hite Butterworth filters with a bandwidth of 0 - 150 Hz, prior to digitization with 16 

bit precision at 465 Hz or 500 Hz. For sinusoidal head stimulations, head and gaze sigals were 

normalized for each subject according to their response to the 0.1 Hz stimulus, based on the 

assumption they could continuously foveate the visual target. For near smooth pursuit, the 

target sigal at each frequency was normalized for each subject as they followed a 0.2 Hz 

square wave that stepped a similar amplitude to the sinusoidal stimulus that followed Portions 

of data contaminated by blinks or any extraneous saccades were visually idatifEd and 
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discarded. Eysin-head rotations (referred to, hereafter as "eye position") were calculated by 

subtracting the head position sigal from eysin-space (gaze) signal. Convergence angle was 

obtained by subtracting right gaze from left gaze. We differentiated these signals to obtain 

conespondingvelocity measurements, and filtered these sigals with a Remz filter (bandwidth 

0- 40 Hz) (Ramat et al. 1999). Prior to filtering, saccades were remved from the eye and gaze 

sigals via an interactive routine describd elsewhere (Das et al. 1995a). We determined the gam 

of EVOR during head rotations for each trial by calculating the ratio of power spectral density 

of eye and head velocities at the frequenaes of interest, including the sumof-sines stimuli, 

using a fast Fourier transform ( FFT) method. EHT gain during viewing of a head-fixd near 

target and smooth pursuit gain during trackingof a near target were calculated by taking the 

ratio ofpower spectral density of gaze and target velocities at the frequencies of interest. The 

phase response was determined by measuring phase angle of t h s e  paired signals and remrding 

the phase difference between than at the frequency of interest. 

For transient head perturbation stimuli, we dehed stimulus onset as when head 

acceleration exceeded 200 de@, and measured "onset head velocity" and "onset eye velocity" 

at this point. We then determined, interactively, the peak head and eye velocity values in the 

70 ms epoch following the stimulus onset (Aw et al. 19%). The value of Gvor for each 

response was calculated by equation (1): 

. ,  , d  

(1) 

There were a total of nine head perturbations employed at each frequency of head 
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rotation, and from these responses we calculated the median value of Gvor for each test 

condition. As a check ofthereliability ofthis methodology, we also measured the median value 

ofeyeand head velocity in the 70 ms following stimulus onset, and u s d  these values to  make 

a separate estimate of Gvor from equation (2): 

Similar results were obtained, and here we present estimates of Gvor based on 

measuremnts by equation (1). Paired statistical comparison were made between responses at 

each frequency and for each subject by either a paired t-test or, if the distribution of data were 

not normal, usmg a Wilcoxon rank-sum test. 

R E S U L T S  

Generalfeatures ofresponses to sinusoicibl rotation 

Representative responses from one subject during the experimmtal conditions 1-3 are 

shown in Figre 1. Responses during rotation in darkness while viewing a flashing far target are 

shown in Figre 1A and B; at 0.2 Hz gain is 1 .O and at 2.0 Hz it is 0.9. During viewing of the 

earth-fxed near target, at 0.2 Hz (C), the subject was able to maintain continuous foveation of 

the nea target, and EVOR gain was 1.49. At 2.0 Hz (D), gain declined to 1.37; thus, at this 

hi&er frequency of head rotat ion, ey e movements did not fully compensate for head rotat ions. 

During viewing of the head-fixd target, at 0.2 Hz (E), the EVOR gain was 0.01, close to an 



Han et al., NOR during near-viewing 

ideal gam of zem for this viewing situation. At 2.0 Hz (F), gain increased to 0.39, indicating 

that theVORwas not completely suppressed or canceled 

Figre 2 summarizes thegain values ofresponses from ten subjects as thqr viaved the 

far target flashed in darkness, the earth-fDced near target, or the head-fixd near target. Note that 

values for the hed-fixd viewing condition (Figure 2 E and F) are plotted as tracking gain 

(corresponding to 1- EVOR gain), so that these responses can be compared directly with 

smooth-pursuit behavior, which is described later. At lower frequencies of rotation, the gain of 

compensatory responses is over 50% greater during viewing of the earth-fDced near target 

(Figure 2C) than the flashed far target in darkness (Figre 2A). However, at hi&er frequencies 

ofhead rotation, the gam and phase shift of EVOR declined during viavinig of the earth-fDced 

near target, but changed little for the flashed far target in darkness. During viewing of the near 

head-fixd target, trackinggain declined and phase lags increased for rotational frquencies above 

1 Hz. 

Head Perturbations: Determimtion of the vestibular contribzdion to the responses 

Figre 3A and B provide examples of responses to head perturbations as subjects are 

sinusoidally oscillated while viewingan edh-fKed or head-fixd near target. The value of Gvor 

for these two responses was similar. Figre 4 summarizes median values for ten subjects, for 

each ofthe five frequencies, that are plotted as frequency histogams. For comparison, we also 

plot measurements of Gvor during rotation in darkness (Figure 4 C); note that for A and By 

Gvor values are dynamic VOR gains measured through transient head perturbations during 
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viavingof a near target, while Gvor in Fisre 4C are steady state gam values during attempting 

to fimte a remmbexd far target in darkness. The range of values was similar for the two near- 

target visual stimuli, but Gvor values were smaller when tested in darkness. Substantial 

variance of data is evident in these histogram, simlar to prior studies (Collewijn and Smeets 

2000). In general, lower values of Gvor were in my opes who WOE spectacle corrections, which 

is a recognized association (Cannon et al. 1985). 

We carried out paired t-tests comparing for each subject and frequency, median gam 

values for the earth-fDced and the head-fixd target viewingconditions (Figure 4D); there was no 

sigpificant difference in 9 out of the 10 subjects (p > 0.053). One subject showed a sigpificant 

greater value of Gvor during viewing of the eatth-fDced target than viewing of the head-fixd 

target (p < 0.001). 

We also compared Gvor values based on transient head perturbations during viewing of 

an earth-fDced near target with Gvor measured in darkness; for the group of subjects, a paired t- 

test showed that transient perturbation Gvor was sigpificantly greater than Gvor measured in 

datkness for the group of subjects (p = 0.007). The median value of Gvor during viewing of an 

earth-fDced target was 0.98 for the group of subjects (range 0.39 - 1.42), whereas the median 

value of Gvor measured in darkness was 0.91 (range 0.54 - 1.04). However, when we 

compared Gvor values based on transient perturbations during viewing of a head-fixd target 

with Gvor measured in darkness, a paired t-test showed no sigdkint difference for the group 

of subjects (p = 0.078). The median value of Gvor during viaving of a head-fixd target was 

0.97 for the group of subjects (range 0.37 - 1.33). 
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We made an estimate of the percentage contribution of Gvor to the gain of EVOR 

during viewingof the earth-fLued near target (Figure 5). Ovaall, Gvor only accounted for 73% 

of the response, less for greater response gams, indicating non-vestibular factors are critical in 

modulatmg VOR gam to an appropriate level. 

Control Experiments: IdentijLcation of non-ves tibulm fadors 

Since Gvor did not fully account for the observed behavior, in the control experiments 

we tested four potential factors that could contribute to EVOR gain: retinal image motion; 

effects of the predictive nature of the stimulus motion; properties of visual tracking eye 

movements; and vergence angje. 

Contribzrtion of retinals& to the non-vestibular component ofthe EVOR 

In four subjects, we measured the gain of EVOR during viming of the near earth-fxed 

target under strobe illumination at 4 Hz with 30 microseconds flash duration, which essentially 

abolished retinal slip. In Figre 6 ,  gains during normal illumination were plotted as black 

symbols connected by black lines; gains during strobe illumination were plotted in open 

symbols connected by dotted lines. The results indicated, how, especially at frequencies of 

head rotation of $1 .O Hz, each of the four subjects showed higber EVOR gain during normal 

illumination (when retinal slip information was available) compared to strobe illumination. 

However, strobe illumination also provides visual cues during each flash, and this result could 

be explained by the fad that more position cues ocmrred at lower compared with hi&er 
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rotational frequencies. To test this possibility, in two subjects, we repeated the experiment 

usmg a strobe rate which was always t h m  times the frequency of head rotation In this way, 

the number ofposition cues occurred in ea& cycle was constant for all stimulus frequencies. In 

Figure 6 ,  these data are plotted as gray symbols connected by gray lines. Both subjects 

generally showed lower gam v&es during this strobe stimulus than under ambient 

illumination. Thus, irrespective of flash frequency, gam was reduced, sugestmg that retinal 

image velocity is used by the brain to optimize the performance of compensatory eye 

movements, including the hi&er frequencies of head rotation that we employed 

Contribzrtion ofprediction to the noevestibulw component ofthe EVOR 

We employed pseudorandom (sum-of-sines) head rotations in 4 subjects to minimize 

contributions of predictive eye movements during viewing of the earth-fxed near target. 

Results were compared with responses to head rotations at each component frequency of sum 

of-sines. Figre 7 showed comparison of EVOR gain between sumof-sines and sinusoidal head 

rotations at each of the component frequencies. All four subjects showed greater values of the 

gain of compensatory eye movements for single sine-wave stimuli than for corresponding 

components ofthe sumof-sines stimulus; this was esqcially true for lower frequencies. These 

results support the view that predictive mechanisms contribute to the overall EVOR. 

Comparison ofsmooth pursuit and the non-vestibulw component ofthe EVOR 

Since retinal image motion and prediction both appear to contribute to the non- 



Han et ai., NOR during near-viewing 

vestibular component, we formally tested whether visual tracking eye movements, specifically 

smooth pursuit, could completely account for the non-vestibular contribution that we 

idmtfied during viewing ofthe earth-fDced near target. We measured smooth-pursuit responses 

to a near target moving at s a m  frequencies and velocities as the chair movements that we 

employed during viewing of the near, eMh-fmed target (EVOR). We used a superposition 

model (Figure 8) to describe the interactions between VOR and non-VOR in accounting for the 

general behavior that we observed (Figures 1 and 2). Although this model does not incorporate 

elanents to account for the dynamic characteristics of pursuit onset (Krauzlis and Lisberga 

1994), we were concerned with steady-state responses to sinusoidal stimuli for both pursuit 

and EVOR, and assumed that predictive mechanisms would have similar influenes under the 

two conditions. We first used a p m e t e r  estimation method implemented in the frequency 

domain to  estimate theoptimalvalues ofthe non-vestibular parameters (Das et al. 1998; Guild 

et al. 2001). The estimation procedure is summarized in the Appendix For each subject we set 

Gvor at the experimmtally determined value during paradigm 4 (head perturbations during 

viewing an earth-fDced near target). Then we estimated optimal values for non-vestibular 

parameters ofthemodel using the earth-fDced near-viewing EVOR responses at each frequency 

ofhead rotations. Model fits of subjects' responses were generally good, with residual values 

of< lO%andparameter coefficient ofvariations of<12%. The optimal values ofthe two non- 

vestibular parameters, for each subject and test frequency, are summarized in Table 1. Finally 

we compared non-vestibular model's predictions of visual trxking with measured smooth 

pursuit performance for each subject and frequency. In this way, we could determine if smooth 
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pursuit accounted fully for thenon-vestibular factor. Fipre 9 compares model predictions and 

measured pursuit performance to a near target in gam (A) and phase shift (B). Model 

predictions deviated substantially from subjects' pursuit responses at hi& frequencies (> 1.0 

Hz), with larger gain and smaller phase shift. A paired comparison of model versus 

experimental gam vahes (Figure 9A) showed substantial differences, especially at higfier 

frequenaes. This result indicated that smooth pursuit alone can not account for the no* 

vestibular contributions to the EVOR during viewing of the earth-fDced near target. We also 

compared the model's predictions ofEHT duringviewingof a head-fixd near target (Figure 2E 

and F), making paired comparisons of predicted and observed tracking gain for each frequency 

andeach subjects. Themodel made mu& better predictions of gain for EHT (Figure 1OB) than 

for smooth pursuit (Figure lOA), especially at hi@er test frequencies. Thus, the non-vestibular 

component differs from smooth pursuit but accounts better for EHT behavior while viewing a 

head-fixd target. 

Exprimszts to determine ifvergence angle is responsible -for EVOR adiustment during near 

viewings 

Our main experimmts 2 and 3 were carried out as 10 subjects monocularly viewed 

either an earth-fDced or a head-fixd near target ( lkm),  but were wearing two eye coils to 

monitor the vergmce angle. For monocular viewing, the only stimuli to convergence are 

accommodation and the perception ofnearness for the viaving eye; there is no visual feedback 

control of vergence. Figlre 11A and B plot the EVOR gain against vergence angle during 
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monocular viewing at the two viewing conditions; no relationship between vergence ande and 

EVOR gam is apparent. 

In addition, we repeated the experimmts in 5 subjects during which subjects were 

viaving the earth-fDced or head-fixd near target binocularly. In this way, we were able to 

investigte how the gam of compensatory eye movements changed when vergence eye 

movements could be visually controlled. Figre 11C systematically compares the gam of 

compensatory responses for earth-fDed (EVOR) or head-fixed (EHT) near targets for either 

monocular or binocular viewing. The vertical dashed line draws the approximate boundary of 

vepnce ande between monocular and binocula viewing.Thus, open symbols correspond to 

monocular viewing(1eft sick ofthe vertical dashed line); gray symbols correspond to binocular 

viewing (right side of the vertical dashed l k ) .  The horizontal dashed line shows the 

approximate boundary of EVOR gain values during viewing an earth-fDced or a head-fixd 

target. Thus, symbols with thick edg: (above the hoizontal dashed l k )  are during viewing of 

an earth-fmd target; symbols with thm edg: (below the horizontal dashed line) are during 

viewing of a head-fixd target. In general, binocular viewing was associated with greater 

vergence anges than monocular viewing, but there was no difference in response gam (EVOR 

or EHT) associated with binocular or monocular viewing. One subject was able to maintain the 

s a  vergence ande during monocular and binocular viewing at all test frequencies (data pomts 

enclosed by an ellipse indicated by m \ . y s ,  close to the vertical dashed line on Figre 1 IC); 

despitethis, his EVOR gain was sigpificantly varied. Thus, our present results do not support 

the hypothesis that vergence ande determines the gain of eye movements to compensate for 
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head rotations during viewingof a near target. 

D I S C U S S I O N  

We set out to understand better vestibular and norrvestibular mechanisms contributing 

to eye rotations that compensate for head rotations (EVOR), while viewing a near target. 

Under such viewing conditions, geometry dictates that eye rotations exceed head rotations by 

50% or more, depending mamly on the proximity of the target. Prior studies, especially those 

employing transient stimuli (Snyder and King 1992; Crane and Demr 1998), indicated that an 

increase ofthe gam ofthe VOR(Gvor) was largely responsible for eye rotations exceeding head 

rotations. Using sine-wave head rotations in h m s ,  we confirmed that, at low frequencies of 

head rotation, the &am ofEVOR was appropriately increased so as to maintain foveation of the 

earth-fxed near visual target (Figure IC). However, all subjects showed a decline in gam and 

increased phase shift at hi&er rotational frequencies (Figure 2C and D). This result sugested 

to us that norrvestibular factors, such as visual tracking contributed to the lower frequency 

response but were unable to sustain their contribution at hi&er frequencies (Figure 9). By 

applying head perturbations during sinusoidal stimulation, we we= able to c o n f i i  that 

modulation of Gvor could not solely account for the gain of compensatory eye movements 

during near-viewing (Figure 5) .  In control experiments, we went on to try and identify the 

relative contributions of vestibular and non-vestibular factors. We also investigited vestibular 

and non-vestibular factors when subjects viewed a near, head-fixd target, since the 

contribution of smooth pursuit to this eyehead tracking behavior has been previously 
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investigited (Cullen et al. 1991; Huebner et al. 1992). In discussing these findings, first, we 

summarize current evidence for a vestibular contribution to the increased gam of compensatory 

eye movements during near-viewing response. Second we will review the possible role played 

by non-vestibular mechanisms, including visual tracking and predictive mechanisms. Third, we 

will examine the relationship between vergence ande and EVOR. Finally, we will discuss the 

relevance of our findings to performance of EVOR during natural activities. 

The vestibular conh-ibtrtion to generatmbn ofcompensatory eye movements during new-viewing 

Several studies have idatifEd the geometric factors that determine the relationship 

between head rotations and eye rotations that perfectly maintain the line of si&t on a specified 

target (BlakemoE and Donaghy et al. 1980; Bigper and Prablanc 1981; Viirre et al. 1986). 

These studies also experimentally confirmed in cats, monkeys, and humans that target location, 

eyshead geometry, and axis of head rotation are important determinants of the response. In 

the present study, we aligned near visual targets on the horizontal axis of one eye and 

attempted to rotate subjects' heads about an axis corresponding to their natural head 

movements; we did not set out to study the e f h t s  of eccentric head rotation 

Having defined the geometry and behavior, subsequent research has focused on the 

neural melanism for the near-viewing response to head rotation In monkeys, Viirre et al. 

(1986) demonstrated that the gain of compensatory eye movements during near viewing was 

ideal even up to frequency of2.0 Hz. Usmg transient stimuli, they showed that viewing a near 

target caused a response that deviated from one during viewinga far target within 20 ms. Viirre 
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et al. proposed that the brain uses canal and otolithic inputs to generate a central estimate of 

target location in head coordinates, and this is followed by a transformation into eye movement 

commands. Snyder and King (1992) confirmed, usmg transient stimuli that the increased gam 

associated with near viewing became apparent -20 ms after the onset of the stimulus. 

In h u m s ,  Crane and Demer (1998) applied transient head rotations and idmtified a 

gin increase attributable to target distance within 8-18 ms after the onset of head rotations. 

Based on the results of gentamicin-induce hair cell lesions of the vestibular labyrinth, it has 

bem sugested that the vergencsmediated component of the response depends on irregular 

vestibuhr nerve afferents (Migliaccio et al. 2004). These results imply that Gvor is increased, 

since visual tracking eye movements act at mud longer latency, even when the near t q e t  is 

head-fixd (Huebner et al. 1992; Johnston and Sharpe 1994; Crane and Demer 1999; G e h a n  et 

al. 1990). TheEVOR has also been tested in humans with sinusoidal head rotations during 

viewing of a near target. Reported results are similar to the present study (Figure 2C and D): 

the gam of compensatory ocular responses is approprhtely increased at lower frequencies, but 

declines with increasing phase shifts as test frequency increases (Hme and Thorn 1987; Crane 

et al. 1997; Paige et al. 1998). Our results of EVOR while viewing of a distant target during 

sinusoidal rotation (Figure 2A and B) have also been confirmed: EVOR shows little change in 

gain or p hase shifi with increasing frequency up to about 4 Hz ( Kasteel-van Linge and M aas 

1990; Paige et al. 1998). Taken togther, these results Sean to point to a paradox: responses to 

transient stimuli indicate an increase of Gvor as the mechanism for increased EVOR gam, but 

responses to sinusoidal stimulation sugest a nonvestibula contribution that deteriorates at 
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hiher frequencies of head rotation 

In the present study, we present evidence that, for h u m  subjects who are oscillated 

sinusoidally, Gvor is not the mam determinant of the increased response Thus, estimates of 

Gvor made during viewing of either an earth-fKed or a head-fixd near target were not different 

innine out oftensubjects (group medians of 0.98 and 0.97, respectively). The values of Gvor 

during near viewing were sigificantly greater than during viewing of a far, flashing target in 

dadmess ( p u p  median 0.91), and the data showed variation (Figure4). Thus, there appears to 

be a difference on the one hand if Gvor is measured at the onset of a head rotation starting from 

a stationary position, and on the other hard if Gvor is measured while the head is in motion 

(sinusoidal oscillations in our s tdy) .  This difference has been commented on before by Paige 

et al. (1W8), who noted that during fimtion of a head-fixd target, if transient stimuli are used, 

the response gain is decreased to about 0.7 (Huebner et al. 1992) but if sinusoidal stimuli are 

used, no such gain decreased is apparent Cpaige 1994). Paige et al. (1998) go on to speculate 

tha  fimtion is degaded during hi& frequency head rotation, with persistent image slip; they 

predict that if transient stimuli are applied during hi&-frequency oscillations, that gam would 

not be decreased, similar to during sinusoidal stimulation -- a result that we confirm in this 

study. 

When we attempted to estimate the contribution of the Gvor to the overall gam of 

compensatory eye movements, it was typically about 73%, meaning that non-vestibular 

factors played a large role. We consider these factors next. 



Han et al., NOR during near-viewing 

Contribldions by non-vestibular mechanisms to generation of compensatory eye movenets 

The decline in gain of compensatory eye movements during fixition of an earth-fmed 

target that occurs at hi&er frequencies (Figure 2C) suggested that an important nomvestibular 

contribution was visual trxking Thus, it is well known that when smooth-pursuit eye 

movements are tested with sinusiodal target motion, gam declines and phase lag increases for 

stimuli above 1 .O Hz (Lisbergr et al. 1981). At lower frequencies, gam may be close to 1 .O and 

phase shift almst zero; this behavior is attributed to predictive mechanisms (Dallos and Jones 

1963; Bames et al. 2002), which the brain mobilizes to counter delays inherent in the visual 

system. 

In control experiments, we applied two novel approaches to determine if smooth- 

pursuit mechanisms contributed to EVOR. First, we tested compensatory eye movements 

under strobe illumination, which essentially abolishes retinal slip information (M elvill Jones 

and Mandl 198l), and found that the gam of the response decreased, especially at hi&er 

frequencies of head rotation (Figure 6). This gain decrease was also present when we used a 

strobe flash rate that was a fixd ratio of head rotational frequency, so that target position 

information was similar throughout. Second we tested compensatory eye movements usmg 

sumof-sines chair rotations, which minimizes the effects of prediction (Figure 7). We found 

t h a  the tracking gam was decreased during surnof-sines stimulation compared with gains for 

rotations at component sine waves, especially those of lower frequency (Figure 7). Since 

prediction is known to declineat hi&er frequencies, the difference between sinusoidal and SUM 

of-sines stimulation becomes less obvious for higher component frequencies. Taken togther, 
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these two results provided circumstantial evidence that smooth-pursuit eye movements made 

animportant contribution to EVOR during viewing a near target. We then asked the question: 

Could smooth-pursuit eye movements account for the entire non-vestibular component of the 

overall response to head rotation? 

~ 

I 

I 

I Inspection ofthe Bode plots of compensatory eyemovements during viewing an eaxth- 
I 

fixd near target (Figure 2C and D) and during smooth p w u i t  (Figure 9A and B) suggests a 

I qualitative difference in the decline of gam and increase of phase shift, with a more abrupt 

change for smooth pursuit above 1.0 Hz. We attempted to make a more quantitative 

determination of whether smooth-pursuit could account for all of the non-vestibular 

component by applying a linear model (Figure 8) and estimatmg optimal values of non- 

vestibular parameters at each frequency for each subject during EVOR. We then compared 

prdictions ofvisual trackingof the norrvestibular part of the model with observed smooth- 

pursuit performance for the same subject and frequency (Figures 9 and 10A ). We found that 

smooth-pursuit performance was inferior to  the model's prdictions, especially at higher 

frequencies, when observed pursuit gam was lower and phase lag  greater. Interestingly, the 

model could predict the behavior of EHT during viavingof a near, head-fixd target better than 

it could predict smooth pursuit (Figure 1OAandB). 

I 

I 

I 

What mechanism other than smooth pursuit could account for the balance of the non- 

vestibular contribution? One possibility is a separate "visual fixition" system, with superior 

tracking properties at higher test frequencies. A body of behavioml and electrophysiolgical 

work supports such a separate entity (Luebke and Robinson 1988; Lynch et al. 1977; Le& 
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and Zee 1999), which may depend on directed visual attention to a stationary tatget. Such 

systems may act at shorter latency than smooth pursuit (Gdlman et al. 19%). If this is the 

case, then could the s a  fixition mechanism account for the model's ability to predict EHT 

behavior during viewing of a head-fixd near target (Figure lOB)? Prior studies have 

demnstrated that the latency to onset of EHT in h u m s  is shorter (- 50 ms) than for smooth 

pursuit eye movements (-100 ms), which mi& be an important factor (Carl and Gehnan 

1987; Huebner et al1992; Johnston and S h q e  1994; Crane and Demer 1999). An explanation 

for this two-fold difference in latency is lacking; however, it s e a s  possible that the brain could 

hamess vestibular sigals, which act at a latency of < 15 ms, to generate eye movements that 

either track the head-fixd tmet  ( E m )  or enhance the VOR (EVOR). Such a sugestion 

requires electrophysiological confirmation, although recent studies have identifed vestibular 

nucleus neurons with discharg properties that change according to gaze strategies and whether 

head movements are active or passive (M &ea and Luan 2003; Cunen and Roy 2004). 

Vergence angle and the compensatory response during near viewing 

During the mam eqerimmts, subjects viewed the near visual target monocularly. In 

this situation, the only stimulus to vergence is accommodation (which is opm-loop). We found 

that vergence angle did not correlate at all with EVOR @I during this testing (Figure 1 1 A and 

B). In control experiments, subjects viewed the targets binocularly, so that vergence angle was 

appropriate for near viewing. Under these conditions, four of the subjects showed a greater 

vergence angle, but the gain of EVOR was not increased compared with monocular viewing. In 



Han et al., NOR during near-viewing 

one subject, the vergence angle was similar during monocular and binocular viewing and, in his 

case, EVOR gain was smaller during binocula viewing. Several prior studies have sugested 

that vergence angje is an important determinant of EVOR gam. For example, Snyder and King 

(1992) reported that, for head rotations around an axis lymg between the otoliths, vergence 

angle was linearly related to the gain of compensatory movements. However, in a related 

study, Snyder, Lawrence and King (1 992) tested VOR responses during vergence movements, 

and were able to show that compensatory responses anticipated vergence movements, 

sugestmg that a “central command sipal rather than an afferent or efferent copy of vergence 

position was used to modulate VOR gain”, Studies in h u m s  that have employed sinusoidal 

head rotations have either not compared monocular and binocular viewing conditions as we did, 

or have not directly measured vergence ande (Hme and Thorn 1987). Stronger evidence has 

been presented to indicate that vergence ande determines response gam during sinusoidal 

stimulation for the translational VOR in monkeys (We; et al. 2003; Anglaki 2004). Indeed, 

vergence may have different effects depending on species (e.g., monkey versus h u m )  or 

stimulus type (tmsient rotation from statonary start versus sinusoidal rotation). Based on our 

present study, we sugest that vergence angle is not the actual determinant of EVOR gain in 

h u m s  during sinusoidal stimulation and viewing of a near target. Instead, our data indicate 

that monocular visual cues containmost ofthe information for appropriate adjustment of gam, 

although binocular vision of the near target may improve EVOR performance. This finding that 

vergence angle is not correlated with VOR gain during near viewing is consistent with our 

former study of visually enhanced VOR during mkor viewing(Han et al. 2001). 



Han et al., NOR during near-viewing 

Possible signijaznce ofpraent resultsfor natural behaviors 

How revelant are our f d i n g s  to natural behavioa? During locomotion, head 

perturbations have a periodicity to than, which is imposed by stepping frequency (Grossman 

et al. 1988). Fourier analysis of such head movements shows that. in the yaw plane, 

predominant frequencies typically in therange 0.5 - 2.0 Hz with harmonic up to 10 Hz. Thus, 

the range of frequencies employed in the present study are not disimilar to those occuring 

during locomotion. Although we may focus our attention on distant objects during walking and 

running sometimes it is important to view proximate objects, to avoid collision; under those 

circumstances EVOR performance during near viewing is important. Our results suggest that, 

under such circumstance, EVOR is adequate to compensate appropriately for fundamental 

frequencies, and partially compensates for higher-frequency harmonics. However, some 

caution is required in extrapolating our results, which concern en bloc rotation to the head-free 

condition of natural locomotion, since elatrophy siolgical studies have identifed vestibular 

nucleus neurons that behave differently during active than passive head rotation (McRea and 

Luan 2003; Cullen and Roy 2004). Further studies are needed to measure gaze stability, retinal 

image motion, and visual function during locomotion, as subjects view proximate objects. 
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Appendix Method for estimating non-vestibular parameters 

We developed a superposition model (Figure 8) to describe the intexactions between 

vestibular and non-vestibular factors during viewing an earth-fixed near target. The non- 

vestibular factors include all components that could contribute to EVOR modulation during 

near viewing such as visual tracking and predictions. The transfer hnction ofthemodel is 

specified in equation A1 : 

In equation A1 , Gnvor (internal gin) and Tnvor (time constant) are paramters 

representingnon-vestibular factors. They are unknown parameters that need to be estimated. 

Gvor (internal gin) and Tvor (time contant) are parameters representingintemal vestibular 

factor. They are known parameters: Gvor is measured by applyingtransient perturbations 

(acelention > 1,000 deg/s/s) while viewing of an earth-fixed near target during sinusoidal head 

rotations (paradign 4). Tvor= 15 sec(Cohen et al. 1981). A is the frequency spectrum.j = . 

are FFTs 

of head 

velocity and eye velocity, respectively. is the FFT of eye-in-orbit velocity, adjusted by 

the equation of Viirre et al. (1986) for near viewing. Thus, the eye rotation (e .g ,  ri&t eye, 

@J requkd to maintain target fimtion during head rotations (H) are determined by the radius 
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ofhead rotation (R), the distance ofthe target from the center ofhead rotation (R+D), the 

interocular distance (I), and the target eccentricity (y), as quantified by the equation A2: 

For each subject, we measured I (intemcular distance) and D (target distmce from the 

subject’s viewing ey e) directly. 

We thenoptimized parameters 

!, 1 , 3, I 

R (radius ofhead rotation)  an^ y (target eccentricity) usingequation (A2) to curve fit the 

EVOR responses at 0.2 Hz head rotations when subjects wereableto oontinuously foveateon 

the earth-fixd near target. The optimal parameters for each subject were then used in the 

equation in the EVOR model (Viirre’s equation”in Figure 8) to account for the retinal image 

motion induced by head rotation. 

To find the optimal values of thenon-vestibularparameters Gnwr and Tnwr, we used 

a nonlinear least square parameter estimation mdhod implanented in the fiequency domain 

(Das et a1 1998). In the frequency domain, the objective function “(B) is defined by equation 

A3: 

where: “(B) is objective function; 

B is the unknown parameter vector [Gnvor Tnvor]; 

y,  is the FFTs of the experimental data (EVOR); 
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J(B) is model outputs given by the transfer hnction equation (Al); 

N is the number of points in FFT; 

i is the harmonic number. 

Each estimates was based on one trial with a total number of 5,000 datapoints 

(corresponding to 10 seconds samplingtime) collected at each frequency duringviewing an 

earth-fDced near target. Prior to running the procedure, noise and saccades were removed 

interactively. For each estimates, five different startingpoints were taken m the rang ofthe 

possible values, The estimation was repeatd until optimization terminated successhlly . For 

each subject, we calculated the man values of the estimations terminated from five initial 

values. In addition, we evaluated the coefficient of variation (standard deviation / mean value) 

for each parameter, and theresults are shown inTable 1. We then identified the componcnts of 

non-vestibular factor m two ways: (1) We mmpatcd the non-vestibular model predictions of 

smooth pursuit with the observed performance during near viewing. In this way, we could 

identify if smooth pursuit could fully account for the non-vestibular componet. (2) We 

compared the non-vestibular model predictions with the observed EHT perfonnance to 

identify if the same non-vestibular mechanism could account for themodel's ability to predict 

EHT behavior while viewing of a head-fixed near target during head rotations. 
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Figure Legends 

Figre 1. General features of EVOR responses from one subject duringthe main experiments 1- 

3. A and B are responses during viewing ofthe fir flashed tar@ in an otherwise dark mom. 

The gain of the response is close to 1.0 at 0.2 Hz and 0.9 at 2.0 Hz. C and D are duringen-bloc 

rotation while viewingan earth-fixed near target. At low frequmcy (C, 0.2 Hz), the actual 

EVOR gam is 1.49 which is close to the ideal gain of 1.50 (calculated from the geometry in 

Appendi@, indicatingthat the compensatory eyerotations satisfy the visual demands. At high 

frequency (D, 2.0 Hz), the actual EVOR gain is 1.37 which deviates fiom the ideal gin 1.50 by 

9% indicatingthat the ability to compensate for head rotations is impaired. E and F are during 

en-bloc rotation while vkwinga head-fmed near target (EHT). At low frequency (E, 0.2 Hz), 

the actual EVOR gain is 0.01 which is close to the ideal gin of 0 mdicatingthat VOR is 

negted. At high fiequcmcy (F, 2.0 Hz), theactual EVOR gain is 0.39 indicating that VORis 

only partially suppressed. 

Figre 2. Bode plots summarizing EVOR gain and phase shift, from 10 subjects, during en-bloc 

rotation during the mam experimmts 1-3; head rotations are in the frequency range 0.2 - 2.8 

Hz.. Plots A and B summarizes responses during viewing the flashed far target in darkness. 

Note that gam and phase change little over the frequency range tested. Plots C and D are 

responses while viewingan earth-fixed; all subjects showed decreased gain (C) and increased 

phase shift (D) at highfrequencies. For viewingof the head-fDced near target (plots E and F), 

trackinggain is plotted with respect to chair stimulus. Subjects showed increased gain (E) and 
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increased phase shift (F) at test frequencies above 1.0 Hz. 

Figre 3. Illustration of how Gvor was estimated from head perturbations during sinusoidal 

rotation Theonset oftransient head perturbation is indicated by the vertical arrow ineach 

figre. Peakvelocity measurements aremarked with asterisks. Plot A shows an example ofthe 

perturbation response as the subject views an earth-fixed near target; in plot B, he views a 

head-fixd near target. The chang in head and eye velocity (inverted to aid mmparisons) is 

similar during the two visual conditions. For plot A, Gvor was 1.08; for plot B, Gvor was 

1 .@I. 

Figre 4. Histogram summarizing distribution of median Gvor for each of five test frequencies 

and ten subjects (n=50) when viewing an earth-fcied (A) or a head-fxed (€3) near target. Plot C 

summarizes Gvor measured in darkness. Note that for plots A and B, Gvor values were 

measured through transient head pertuhations but, in plot D, Gvor values are based on steady- 

state measurements. Plot C summarizes a paired comparison of Gvor duringviewing of either 

an earth-fixed or a head-fixd near target; a paired t-test showed no sigificant difference (p > 

0.05 3). 

Figre 5. Gvor contribution to the overall EVORresponse, from 10 subjects, duringviewmg of 

anearth-fixed near target at the test frequencies. Gvor contribution is fairly constant at about 

73% of the total behaviors. For those few points that exceed 1 OO%, the value of Gvor exceeded 

the value of EVOR. 
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Figre 6. Comparisons of EVOR responses, from four subjects, betweennorml illumination 

and strobe illumination during viewingof an earth-fKed near target at the test frequency range. 

Blilck symbols comcted by black line are responses under normal illumination; open symbols 

connected by dotted line are during strobe illurninattion at 4 Hz flash rate; gay symbols 

connected by gray line are duringstrobe illumination in which the flash rate is 3 times the 

rotational frequency. All subjects show hi&er EYOR giin under normal illumination than both 

strobe illumination conditions duringhigh frequencies ($1 .O Hz) of head rotations. 

Figure 7. Comparison of EVOR responses, from four subjects, between sines and sum-of-sines 

head rotations while viewingan earth-fixednear tar@. Filled symbols connected by solid line 

are during sinusoidal head rotations; open symbols connected by dotted line are during sum-of- 

sines rotations. All subjects show hi@er EVOR gin duringsinusoidal versus sum-ofsines 

stimuli, especially at low fiequacy components, indicating predictions contribute to EVOR 

adjustment. 

Figure 8. The supaposition model used to describe the interaction betwea vestibular and 

non-vestibular factor when viewing of an earth-fixed near target ( ) during en-bloc head 

rotations in the fi-equency range 0.2 - 2.8 Hz. The transfa function is &en below the model 

stmcture. G,,, (internal gain) and T,,, (time constant) are parameters representingnon- 

vestibular factor. They are unknown parameters that need to be estimated. G,,, (internal gain) 
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and T,,, (time amtant) are parameters representingintgnal vestibular system. These are 

known parameters: G,,, is measured from behaviors in darkness. T,,, = 15 sec (from previous 

literature). * is the frequency spectrum.j = . 

(adjusted by Viirre's equation for near viewing). are FFTs of head velocity and 

eye velocity, respectively. The summing junction on the left is the algbraic summation of 

(target velocity), (eye velocity) caused by head velocity ), and (the proceeding eye 

velocity) . The result is the retinal error velocity . The summing junction on the right 

represents the superposition of the internal VOR signal 

is the FFT of eye-in-orbit velocity 

and 

and the internal non-VOR signal 

calculated by the brain to generate the final eye velocity . 

Figwe 9. Comparison between smooth pursuit trackingginpredicted by non-VORmodel and 

the measurement from 10 subjects at each ofthe test frequencies. Results are summarized in 

Bode plots -gain (A) and phase shift (B). Experimental responses are shown incircles 

connected by solid line, model predictions are shown in squares connected by dotted line 

Model predictions deviated f?om subjects' responses giin substantially at high frequencies with 

hiber g i n  and smaller phase shift. Thus, smooth pursuit can not fully mount for non- 

vestibular components that amtribute to EVOR responses duringviewmg of an earth-fixed 

near target . 

Figre 10. Paired comparison of predicted tracking gain for smooth pursuit (A) and EHT 

during viewing ofthe near, head-fixed targt duringchair rotaion (B) versus experimentally 
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measured near smooth pursuit responses. Each pomt corresponds to one test frequency for 

each subject. Datapoints that fall on the diagonal line correspond to emct predictions of 

behavior by the model. Note that the mdelpredicts greater trackinggains for smooth pursuit 

than were observed, but that model predictions are more accurate for EHT beahvior. 

Figre 11. Relationship between EVOR @pin and vergene an$e duringy aw head rotations & 

0.2 - 2.8 Hz. A a d  B show results during mnocular viewing of an earth-fixed target (A) and a 

head-fixd target (B), from 10 subjects. C shows the comparison of EVOR gGns, from 5 

subjects, between monocular and binocular viewing, as well as between earth-fKed target 

viewing and head-fixed target viewing. Note: in A and B, the shape of symbols codes for 

frequency; in C, the shape of symbols codes for subject. Also m Cy open symbols a~ 

monocular viewing(1eft part of the vertical dashed h e ) ;  gray symbols are binocular viewing 

( r a t  part of the vertical dashed line). The vertical dashed h e  draws the approximate 

boundary of vergence angle between monocular and binocular viewing. Symbols with thick edge 

(above the horizontal dashed line) are durmgviewingof an eatth-fxed target; symbols with thin 

e d g  (bdow the horizontal dashed line) are durmg viewing of a head-fmed target. Horizontal 

dashed line shows the approximate boundary of EVOR gain between viewing an earth-fxed 

and a head-fDced target. Note that one subject was able to keep nearly the s m  vergence angle 

during monocular and binocular viewing(data endosed by ellipse indicated by arrow), but the 

EVOR gam during binocular viewing was slibtly smaller. 
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